Kenneth Jeffries

Photo of Kenneth Jeffries

Assistant Professor

Office W477 Duff Roblin
(204) 474-6429

Environmental and anthropogenic stressors can disrupt homeostasis and negatively affect aquatic organisms, potentially leading to impacts on growth, reproduction and survival over time. The focus of the research in the Jeffries Lab is to investigate how various environmental and contaminant stressors can affect an individual's fitness through examination of responses at cellular, tissue and whole organism levels of biological organization, and how these responses can potentially scale up to population level consequences. We use genomics techniques to characterize the cellular responses of fishes to abiotic, biotic, and anthropogenic stressors relevant to aquatic ecosystems. The cellular level responses are integrated with tissue or whole organism level performance indices to gain a more comprehensive understanding of the effects of exposure to environmental stressors and to address whether populations and species can persist in changing or disturbed aquatic environments. This work has focused on non-model fishes that are economically important, invasive or of conservation concern and combines approaches used in the fields of physiology, ecological genomics, fish ecology and ecotoxicology. We also examine how exposure to environmental stressors affects the expression of immune response genes and increases the susceptibility of stressed individuals to pathogen infections, a potentially significant and undetected cause of fish mortality in disturbed ecosystems. Because of the widespread influence of climate change, environmental disturbances and the impacts of human activity on ecosystems, much of this research is applicable for studying aquatic systems throughout North America.

Current Projects

Combining transcriptomics and metabolic indices to understand Walleye movement patterns in Manitoba.

Effects of early rearing conditions on the development of Lake Sturgeon.

Cellular and physiological effects of lampricide exposure on Sea Lamprey and Bluegill.

Understanding the effects of temperature on Lake Sturgeon, Sea Lamprey and Brook Trout.

Characterizing the age and size structure of Black Crappie populations in eastern Manitoba.

Effects of climate change and anthropogenic stressors on clams in the Canadian arctic.

Selected Publications

Jeffries, KM, Connon, RE, Davis, BE, Komoroske, LM, Britton, MT, Sommer, T, Todgham, AE and Fangue, NA (2016). Effects of high temperatures on threatened estuarine fishes during periods of extreme drought. Journal of Experimental Biology 219 (11), 1705–1716.

Komoroske, LM, Connon, RE, Jeffries, KM and Fangue, NA (2015). Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish. Molecular Ecology 24 (19), 4960–4981.

Jeffries, KM, Hinch, SG, Gale, MK, Clark, TD, Lotto, AG, Casselman, MT, Li, S, Rechisky, EL, Porter, AD, Welch, DW and Miller, KM (2014). Immune response genes and pathogen presence predict migration survival in wild salmon smolts. Molecular Ecology 23 (23), 5803–5815.

Jeffries, KM, Hinch, SG, Sierocinski, T, Pavlidis, P and Miller, KM (2014). Transcriptomic responses to high water temperature in two species of Pacific salmon. Evolutionary Applications 7 (2), 286–300.

Research Interests

Biodiversity, Ecology and Environment, Physiology, Molecular Ecology, Transcriptomics, Conservation Physiology, Threatened Fishes, Ecotoxicology

Recent Publications

  • Akbarzadeh, A.; Günther, OP; Houde, AL; Ming, TJ; Jeffries, KM; Hinch, SG and Miller, KM (2018). Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics 19, 749.
  • Connon, RE; Jeffries, KM; Komoroske, LM; Todgham, AE and Fangue, NA (2018). The utility of transcriptomics in fish conservation. Journal of Experimental Biology 221, jeb148833.
  • Drenner, SM; Hinch, SG; Furey, NB; Clark, TD; Li, S; Ming, T; Jeffries, KM; Patterson, DA; Cooke, SJ; Robichaud, D; Welch, DW; Farrell, AP and Miller, KM (2018). Transcriptome patterns and blood physiology associated with homing success of sockeye salmon during their final stage of marine migration. Canadian Journal of Fisheries and Aquatic Sciences 75, 1511–1524.
  • Jeffries, KM; Fangue, NA and Connon, RE (2018). Multiple sub-lethal thresholds for cellular responses to thermal stressors in an estuarine fish. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology 225, 33–45.
  • Frank, DF; Hasenbein, M; Eder, K; Jeffries, KM; Geist, J; Fangue, NA and Connon, RE (2017). Transcriptomic screening of the innate immune response in delta smelt during an Ichthyophthirius multifiliis infection. Aquaculture, 80–88.

→ See more publications


Unfortunately, I do not have any specific funding for new students at this time. I am always happy to discuss potential opportunities with prospective students. Please include your CV, your transcripts and short statement addressing why you are interested in my lab for graduate research when you contact me..